
Technical Report: Real-time MU-MIMO
Beamforming with Limited CSI Data Samples

Shaoran Li† Nan Jiang‡ Chengzhang Li† Y. Thomas Hou† Wenjing Lou† Weijun Xie ‡
† Virginia Tech, Blacksburg, VA

‡ Georgia Tech, Atlanta, GA

Abstract—MU-MIMO beamforming is a key technology for 5G
and Next-G networks and it requires Channel State Information
(CSI). But in practice, CSI is bound to have uncertainty and
only limited data samples are available to derive a beamforming
solution. Further, an MU-MIMO beamforming solution must
be derived in a millisecond to be useful for 5G in real-time.
This paper addresses these issues by developing a real-time
beamforming solution with limited CSI data samples. We present
ReDBeam—a real-time data-driven beamforming solution for
MU-MIMO. The main contribution of ReDBeam is a parallel
algorithm and a GPU-based implementation that delivers an
MU-MIMO beamforming solution within 1 millisecond while
offering a probabilistic guarantee of data rates and minimizing
power consumption associated with the beamforming solution.
ReDBeam is purposefully designed to take advantage of the vast
parallel processing capability offered by Commercial Off-The-
Shelf (COTS) GPU. Through extensive experiments, we show
that ReDBeam can meet the 1 millisecond real-time requirement
and is orders of magnitude faster than other state-of-the-
art algorithms for the same problem. ReDBeam conclusively
demonstrates that MU-MIMO beamforming with a performance
guarantee can be achieved in real-time when using only limited
CSI data samples.

I. INTRODUCTION

MU-MIMO is becoming ubiquitous in 5G and next-G
networks because it is capable of increasing spectral efficiency
and enhancing connectivity [1]–[3]. In MU-MIMO, the Base
Station (BS) can transmit (or receive) different data streams to
(or from) multiple User Equipments (UEs) simultaneously on
the same spectrum [4]. Due to mutual interference among the
UEs’ data streams, beamforming is necessary to increase the
received signal power and suppress interference. It is well-
known that Channel State Information (CSI) is needed to
derive a beamforming solution that ensures transmit signals
are precoded in the correct directions.

There is a large body of works on MU-MIMO beamforming
that assumes CSI as a given constant (see, e.g., [5]–[7]).
However, such an assumption is unrealistic as there is always
some discrepancy between the obtained CSI and the actual
CSI. Such a discrepancy is due to a number of factors, such as
channel estimation errors [8], [9], limited feedback [10], [11],
and hardware imbalance [12], [13], among others. Therefore,
a practical MU-MIMO beamforming solution must address
uncertainty in CSI.

Among the existing works that have addressed CSI un-
certainty, they can be categorized into two branches: model-
based and data-driven approaches. Under the model-based
approach, CSI is assumed to follow or observe some known

distributions [14]–[18], channel statistics [19]–[21], or worst-
case boundaries [22], [23]. These works typically offer a neat
mathematical formulation and subsequently propose solutions
with certain performance guarantees. However, these works
are limited to their assumed models. With increased complex-
ity in the operating environments for 5G and next-G networks,
these assumed models are likely to lose their efficacy. On
the other hand, the data-driven approaches (a.k.a. model-free)
directly use CSI data samples to derive a beamforming solu-
tion. The prevailing examples of this approach are learning-
based solutions (see, e.g., [24]–[26]). Data-driven solutions are
highly adaptive to a wide range of scenarios and can easily
meet real-time requirements. The problems with this approach
are its requirement of a large amount of past CSI data samples
for training and a lack of theoretical performance guarantee.

Recently, a new approach called D2BF was proposed by
[27] that combines the strengths of both model-based and data-
driven approaches. Like the data-driven approaches, D2BF
works with CSI data samples to derive an MU-MIMO beam-
forming solution. But D2BF can directly work with limited
real-time CSI data samples without a complicated offline
training process. Another attractive feature of D2BF is that
it can offer probabilistic performance guarantees to the UEs
based on mathematical formulation and solutions, just like
model-based approaches (which cannot be offered by existing
data-driven approaches). The only limitation of D2BF is its
computational complexity, which cannot meet the stringent
real-time requirement. By “real-time”, we mean a beamform-
ing solution must be derived on the order of one Transmission
Time Interval (TTI) so that it can be used in time.

In this paper, we investigate this novel data-driven approach
in [27] and address the real-time challenge that has been
hindering its potentials. We consider the most common 5G-
NR numerology 0, which has a TTI of 1 ms [28]. Therefore,
we will use this 1 ms as the real-time requirement of our data-
driven MU-MIMO beamforming solution. The main contribu-
tions of this paper are summarized as the following:

• We address the key limitation in a novel data-driven
approach in [27] for MU-MIMO beamforming. This
approach is extremely appealing as it combines the best
features of state-of-the-art data-driven approaches (i.e.,
limited data samples) and model-based approaches (i.e.,
rigorous mathematical models, performance guarantees)
without their pitfalls (e.g., a training process in data-
driven approach and assumed channel knowledge in
model-based approach). The only limitation of this new

approach is how to make it work in real-time. It is
especially important to address this “real-time challenge”
for 5G and next-G networks, where the available time for
computation is limited to 1 ms.

• We proposed a novel solution called ReDBeam, for Real-
time Data-Driven Beamforming. The goals of RedBeam
are: (i) derive a beamforming solution within 1 ms and
(ii) minimize power consumption at the BS associated
with the beamforming solution while guaranteeing prob-
abilistic data rates for the UEs. ReDBeam is a parallel
algorithm and is purposefully designed to take advantage
of the vast parallel processing capability offered by
Commercial Off-The-Shelf (COTS) GPU. The main ideas
of ReDBeam are: (i) identify a promising subspace and
generate a large number of initial solutions within this
search space (ii) perform a local search for each initial
solution in parallel to ensure feasibility and minimum
power consumption, and (iii) choose the best feasible
solution as the final solution.

• We implement ReDBeam on an NVIDIA V100 GPU
hardware with CUDA programming and optimize our
hardware implementation to minimize the total time
consumption. Specifically, we implement ReDBeam in
three parts, with each part as a kernel consisting of many
small and independent steps to fit into the COTS GPU.
We optimize each kernel by properly allocating GPU
threads into thread blocks and efficiently choosing the
small steps for each GPU thread to minimize execution
time. To reduce memory access time, we use shared
memory inside each kernel to store the temporary results
and only use global memory to exchange results between
different kernels.

• Through extensive experiments, we show that ReDBeam
can meet the 1 ms timing requirement and this tim-
ing performance has effectively addressed the real-time
challenge associated with D2BF, which requires several
orders of magnitude more computation time. Further,
ReDBeam can guarantee probabilistic SINR thresholds
(equivalent to data rates) for the UEs and is very close
to D2BF while consuming only slightly more power
than D2BF. When compared to a model-based algorithm
(Gaussian Approximation), ReDBeam offers significantly
better performance in running time and power consump-
tion. Our successful implementation of RedBeam conclu-
sively demonstrates that MU-MIMO beamforming with
performance guarantee can be done in real-time using
limited CSI data samples.

II. SYSTEM MODEL AND MATHEMATICAL FORMULATION

In this section, we introduce our system model and formu-
late our optimization problem. Table I lists the notations used
in this paper.

A. MU-MIMO Beamforming

Figure 1 shows a 5G cell that employs MU-MIMO scheme
to serve a group of UEs. Denote M as the number of antennas

Beamforming

(Precoding)

Data for UE 1

Data for UE 2

Data for UE K

…

…

UE 1

UE 2

UE K
BS with M antennas

(a) MU-MIMO setting

UE 1

UE 2

UE K

RB 63

RB 57

…

RB 56

RB 7

RB 1

…

RB 0

…

RBG 0

RBG 1

RBG 7

RBG 2…

64 RBs in 8 RBGs, serving K UEs

(b) RBGs for UEs

Fig. 1. Downlink MU-MIMO in a 5G cell.
TABLE I

NOTATIONS

Symbol Definition
CM×1 The set of all complex M × 1 column vectors
G Number of RBGs
G The set of RBGs, i.e., G = {1, 2, · · · , G}
h(g,i) An M × 1 complex column vector including the

CSI from the BS to UE i on RBG g

ĥ(g,i)(n) The n-th data sample of h(g,i)

K Number of UEs
K The set of UEs, i.e., K = {1, 2, 3, · · · ,K}
Kg The subset of UEs from K scheduled on RBG g
|Kg | Number of UEs scheduled on RBG g
L Number of start points in ReDBeam
M Number of antennas at the BS
N Number of data samples for each h(g,i)

P max Maximum power budget of the BS on all RBGs
Phi

True but unknown distribution of h(g,i)

w(g,i) Beamforming vector for UE i on RBG g, an M × 1

complex column vector, i.e., wi ∈ CM×1

wℓ
(g,i)

Precoding vector for UE i in the ℓ-th start point
γi Actual SINR at UE i
γreq
i Required SINR threshold at UE i

ϵi Risk level for UE i
λℓ Scaling factor for the ℓ-th start point
σ2
i Power of the thermal noise at UE i

of the BS and denote K as the number of UEs. Denote
K = {1, 2, 3, · · · ,K} as the set of K UEs. Without loss of
generality, we assume that each UE only has one antenna. We
consider downlink in this work but the proposed solution can
be easily extended to the uplink case as well.

Following 5G terminology, the time domain and frequency
domain are slotted into Transmission Time Intervals (TTIs)
and sub-carriers. As defined in 5G-NR [28], 12 sub-carriers
in one TTI are called one Resource Block (RB). To reduce
the scheduling overhead, the BS can group multiple RBs into
an RB Group (RBG) and use RBG as the granularity for
scheduling. The number of RBs in one RBG can be 2, 4, 8 or
16 [29]. In Fig. 1, 64 RBs are grouped into 8 RBGs (with
8 RBs in an RBG). Each RBG serves a subset (multiple)
of UEs; each UE can receive from multiple RBGs. Denote
G = {1, 2, · · · , G} as the set of G RBGs at the BS. For RBG
g ∈ G, denote Kg as the subset of UEs that are selected to
receive data from RBG g. Similar to existing works (e.g., [15],
[16], [27]), we assume that Kg for each g is given a priori.

Based on the MU-MIMO scheme, UEs in Kg will simul-
taneously receive different data streams from the BS. So we
need to design a unique precoding vector for each active UE

…

0 1 2 …

…

… … …

…

RB0

RB1

…

RB7

… …

N CSI Data Sample Tx Beamforming Future RBsPast RBs

RBG0
… … …

Current Window

Time (TTIs)

N

8
-1

N

8

N

8
+1

N

8
+2

N

8
+3 …

…

0 1 2 …

…

… … …

…

RB0

RB1

…

RB7

…
RBG0

… …

Next Window Time (TTIs)

N

8
-1

N

8

N

8
+1

N

8
+2

N

8
+3 …

Fig. 2. Sliding window for CSI data samples.

on an RBG g. Denote w(g,i) (an M × 1 complex column
vector) as the precoding vector for UE i on RBG g. These
w(g,i)’s should be optimized by the BS before being applied to
the downlink transmission. Specifically, w(g,i) needs to satisfy
certain constraints or requirements, such as the BS’s total
power budget on all RBGs and UEs’ data rate requirements.
Optimizing w(g,i) requires knowledge of CSI from the BS
to the UEs. As discussed in Section I, channel uncertainty is
inevitable, thus CSI is intrinsically random. In this work, we
will show how to use a small amount of CSI data samples to
accomplish this big task.

B. CSI Data Samples from Sliding Window

Denote h(g,i) (an M × 1 complex column vector) as the
CSI from the BS to UE i on RBG g. In a real-world 5G cell,
such h(g,i)’s should be estimated during a channel sounding
process. Channel sounding can be performed on each RB,
then the estimated h(g,i) on the RBs from the recent time
slots can be collected as the data samples of h(g,i). That is, a
limited number of CSI data samples per h(g,i) are available.
Note that we do not require any other knowledge such as
distributions, which is a much stronger requirement and is
typically unavailable in practice.

Now we elaborate on how to obtain a limited number
of CSI data samples and perform MU-MIMO beamforming
using a sliding window mechanism. Figure 2 illustrates the
idea, where each small rectangle represents an RB and each
RBG consists of 8 RBs (i.e., G = 8). Each window covers
(N/G + 1) TTIs and has N + G RBs. We can estimate the
CSI from each UE on each RB, as is commonly assumed
in MU-MIMO beamforming literature [4], [5], [30]. So we
will use the N data samples collected in the most recent
N/G TTIs (green) to design precoding vectors for the G
RBs in the upcoming TTI (red). Given that these CSI samples
are from neighboring RBs (either in frequency or TTIs), we
assume the CSI in two neighboring windows follows the same
(unknown) distribution. We will design beamforming vectors
w(g,i) solely based on these N CSI data samples. Under the
sliding window mechanism shown in Fig. 2, we need to design
an MU-MIMO beamforming solution within one TTI. Under

the most common 5G numerology 0, one TTI is 1 ms, so
we must obtain the precoding vectors within 1 ms. This is
the real-time requirement for our MU-MIMO beamforming
problem.

For our MU-MIMO beamforming problem, we use a small
N , typically on the order of tens. When N becomes larger
(more CSI data samples), we would expect a more accurate
channel. But it also increases complexity (due to a larger prob-
lem size of MU-MIMO beamforming) with likely marginal
improvement. On the other hand, when N becomes smaller,
we may not have sufficient CSI data samples to address
channel uncertainty in MU-MIMO beamforming and will
likely experience poor performance. So the goal is to use
the smallest possible N to design a real-time MU-MIMO
beamforming solution (in 1 ms) so that the UEs’ data rate
requirements can be met. We note that this sliding window is
a general form of the widely used “block-fading” model [31],
where CSI is assumed to be constant on each block (a group of
RBs) but is completely independent on different blocks. The
main difference here is that the CSI is a random variable in
our setting and we have no prior knowledge of its distribution.

Denote Ph(g,i)
as the probability density function (PDF) of

the unknown distribution of h(g,i), i.e., h(g,i) ∼ Ph(g,i)
. Then

we have the N data samples of h(g,i) drawn from the unknown
distribution Ph(g,i)

. We denote this knowledge as:

Unknown distribution: h(g,i) ∼ Ph(g,i)
, N samples . (1)

C. Problem Formulation

We consider two requirements for the precoding vectors
w(g,i). The first is the power budget. Denote P max as the power
budget at the BS. Then the total transmission power from the
BS over all RBGs (to all UEs) cannot exceed P max, i.e.,∑

g∈G

∑
i∈Kg

||w(g,i)||22 ≤ P max , (2)

where || · ||2 is the L2-norm.
The second is on UE’s service requirement and we assume

each UE has a data rate requirement. Meeting this data rate
requirement is equivalent to meeting an SINR threshold [16]
for the given RBG bandwidth. When a UE receives data from
multiple RBGs, it must use the same Modulation and Coding
Scheme (MCS) on all its allocated RBGs per 5G standards
[29]. So it must use the same SINR threshold on all its RBGs.
Denote γ req

i as the SINR threshold for UE i, which is a given
constant for each MU-MIMO beamforming instance. Denote
γ(g,i) as the actual SINR at UE i, which depends on the
uncertain CSI h(g,i) and the precoding vectors w(g,i):

γ(g,i) =
|(w(g,i))

Hh(g,i)|2∑k ̸=i
k∈Kg

|(w(g,k))Hh(g,i)|2 + σ2
i

(i ∈ Kg, g ∈ G) ,

(3)
where (·)H denotes conjugate transpose. σ2

i is the power of
thermal noise at UE i.

Due to channel uncertainty, the CSI h(g,i)’s should be
modeled as random variables (based on N data samples).

Subproblem on RBG 1

Subproblem on RBG G

Subproblem on RBG 2

...

Combine
solutions on
RBGs 1~G

P1 on
all

RBGs

Meet
Constraint

(2)?

Solution to P1

P1 infeasible

Yes

No

Fig. 3. Recover the solution to P1.

Consequently, the actual SINRs γ(g,i) are also random vari-
ables. To cope with such randomness, we employ probabilistic
constraint for γ(g,i) as follows:

P
{
γ(g,i) ≥ γ req

i

}
≥ 1− ϵi (i ∈ Kg, g ∈ G) , (4)

where P{·} denotes the probability function, ϵi is called risk
level and is the upper bound of γ req

i violation probability for
UE i. Constraints (4) state that the actual SINR γ(g,i) on RBG
g should be greater or equal than the required SINR threshold
γ req
i with a probability at least 1 − ϵi. Clearly, a larger ϵi

means a higher tolerance of SINR threshold violation and a
larger optimization space. In the special case when ϵi = 0,
constraints (4) become deterministic as γ(g,i) ≥ γ req

i always
holds.

Substituting (3) into (4), we have

P

{
|(w(g,i))

Hh(g,i)|2

γ req
i

−
k ̸=i∑
k∈Kg

|(w(g,k))
Hh(g,i)|2 ≥ σ2

i

}
≥ 1− ϵi (i ∈ Kg, g ∈ G) .

(5)

In this work, we are interested in minimizing the BS’s power
consumption while meeting the UEs’ probabilistic data rate
requirements. Our problem can be stated as follows:

(P1) min
w(g,i)

∑
g∈G

∑
i∈Kg

||w(g,i)||22

s.t. BS power budget (2) ,
Probabilistic SINR guarantees (5) ,
CSI data samples with unknown distribution (1) ,

w(g,i) ∈ CM×1 ,

where CM×1 is the set of all complex M ×1 column vectors.
Since P1 is a chance-constrained program, we will first

reformulate it into a deterministic optimization problem. The
reformulation of P1 mainly focuses on the probabilistic SINR
guarantees (5) using N CSI data samples (1). In [27], the
authors showed that P1 can be decomposed into G parallel
subproblems, where each subproblem corresponds to MU-
MIMO beamforming on one RBG. Then each subproblem
can be equivalently reformulated into a deterministic problem
based on the empirical distribution of h(g,i) from its N data
samples using ∞-Wasserstein ambiguity set [32]. Figure 3
shows how we can recover the solution to P1 after we solve all
subproblems. This solution recovery process in Figure 3 does
not introduce relaxation errors and has negligible computation
efforts (a summation of G real numbers and a comparison with
P max). Therefore, we only need to solve the G subproblems.

Since the G subproblems are independent and can be solved
in parallel, we will develop a solution to solve one subproblem
w.r.t. g (g ∈ G), given as:

(P2) min
w(g,i)

∑
i∈Kg

||w(g,i)||22

s.t.
1

N
·

N∑
n=1

I
{
f̂
(
w(g,i), ĥ(g,i)(n)

)
≥ σ2

i

}
≥ 1− ϵi (i ∈ Kg) ,

w(g,i) ∈ CM×1 (i ∈ Kg) ,

where f̂
(
w(g,i), ĥ(g,i)(n)

)
is defined as

f̂
(
w(g,i), ĥ(g,i)(n)

)
={

min
ci

(|(w(g,i))
Hci|2

γ req
i

−
k ̸=i∑
k∈Kg

|(w(g,k))
Hci|2

)
s.t. ||ci − ĥ(g,i)(n)||2 ≤ θ(g,i) , ci ∈ CM×1

} (6)

In P2, ĥ(g,i)(n) is the n-th data sample of h(g,i), I(·) is the
indicator function, and θ(g,i) is a small constant that represents
the search space (distance) of ci around each CSI data sample
[27], [32], [33]. Intuitively, θ(g,i) should be larger when N
CSI data samples deviate further from the true (but unknown)
distribution. We will show a simple approach to set θ(g,i) based
on the N CSI data samples of the current window in Section V.
Note that the unknown CSI h(g,i) in P1 has been replaced by
N CSI data sample ĥ(g,i)(n) in P2. Thus, P2 is a deterministic
optimization problem.
Technical Challenges P2 has an interesting mathematical
structure. In P2, an optimization problem is nested within the
constraint, through the calculation of f̂

(
w(g,i), ĥ(g,i)(n)

)
. It

is a non-convex Quadratically Constrained Quadratic Program
(QCQP). For a given w(g,i), we need to solve this QCQP
by finding an optimal ci that minimizes the difference be-
tween two terms. Note that there are a total of |Kg| · N
f̂(w(g,i), ĥ(g,i)(n)) in P2 where |Kg| is the number of UEs
served on RBG g. Then we plug these |Kg|·N objective values
into the first set of constraints with indicator functions I(·) to
check whether the given w(g,i) is a feasible solution to P2 or
not. That is, checking the feasibility for a given w(g,i) requires
solving |Kg| ·N non-convex QCQPs.

Second, it is not clear how to optimize w(g,i) considering
the complicated mathematical structures of P2. Iterative algo-
rithms for MU-MIMO (e.g., [5], [6], [27]) require substantial
computation time and cannot meet our real-time requirement
(1 ms). In contrast, the goal of this paper is to develop a real-
time solution with low complexity that sufficiently explores the
search space for w(g,i) (all M × 1 complex column vectors).

III. REDBEAM: REAL-TIME DATA-DRIVEN
BEAMFORMING

In this section, we present ReDBeam—a Real-time Data-
Driven Beamforming solution to P2. In Section IV, we present
a GPU implementation of ReDBeam.

 Full BF space

CSI data samples

1 2 3 ... LL initial solutions

An initial solution

Per sample ZF precoding

1 2 3 ... L

Best feasible solution

Local search

Final solution

Promising
Subspace

scale Scale up

Scale down

1 23 ... L4≤

Drop

Fig. 4. Key steps of ReDBeam.

By design, ReDBeam is a parallel algorithm that is suitable
for implementation on COTS GPU. Figure 4 shows the three
key steps of ReDBeam. First, it generates a sufficiently large
number (denoted as L) of initial solutions in a promising
search space. We call the search space “promising” because it
is generated as a cone based on Zero-Forcing (ZF) precoding
of the CSI data samples. Clearly, there is no guarantee of
feasibility or good performance for any of these L initial
solutions. So in the second step, we employ a scaling-based
local search to find feasible solutions based on these L initial
solutions. Then in the final step, we find the best feasible
solution by comparing their achieved objective values. The
one with the minimum objective value will be chosen as our
solution to P2. Although the main idea of ReDBeam is easy to
understand, how to do the first and second steps is non-trivial.

A. Generating A Population of Initial Solutions

In this step, we generate a sufficiently large number (L)
of initial solutions within a promising search space. The
“promising search space” is a subspace formed by some basis
vectors and it should contain many feasible beamforming
vectors with satisfactory performance. It is possible that the
optimal beamforming solution falls outside of this search space
but it is not a big issue, as long as we can find a good solution
within this space.
A Promising Search Space For ease of exposition, we drop
the subscript g when there is no confusion. The original search
space for wi is CM×1, which is too large. To narrow down
this search space, we observe that a promising direction for
wi ∈ CM×1 should increase the received power and suppress
the received interference for UE i. Based on this observation,
we identify a promising search space to be a cone whose
basis vectors are derived from ZF precoding based on CSI
data samples. ZF precoding is widely used in practice due to
its low complexity and good performance [30].

Denote these N basis vectors as vi(n), n = 1, 2, · · · , N .
Each vi(n) is an M × 1 complex column vector, which is the
ZF precoding vector for UE i under the n-th CSI data sample.
For a given n, the calculation of vi(n), i ∈ Kg is based on the
CSI data samples ĥi(n), i ∈ Kg , i.e., the CSI data samples
from the UEs in Kg . Define an M × |Kg| matrix Ĥ(n) as:

Ĥ(n) =
[
ĥ1(n) ĥ2(n) · · · ĥ|Kg|(n)

]
,

where the i-th column of Ĥ(n) is the CSI data sample for UE
i. We can calculate the ZF precoding vectors vi(n)’s based
on Ĥ(n) following the deterministic CSI model. Since there
are N Ĥ(n)’s, we can calculate the ZF precoding vectors for
each Ĥ(n) in parallel for n = 1, 2, · · · , N .

In ZF precoding, vi(n) is related to the Moore-Penrose
pseudo-inverse of Ĥ(n). Due to the zero interference prop-
erty of ZF precoding, the received SINR at UE i is
|
(
vi(n)

)H
ĥi(n)|2/σ2

i and we would like it to be no smaller
than the SINR threshold γ req

i . Denote a |Kg| × M complex
matrix Ĥ(n)† as the Moore-Penrose pseudo-inverse of Ĥ(n).
Denote ui(n), a M×1 complex column vector, as the complex
conjugate of the i-th row of Ĥ(n)†, i.e.,

Ĥ(n)† =
[
u1(n) u2(n) · · · u|Kg|(n)

]H
.

Therefore, based on the fact that
(
ui(n)

)H
ĥi(n) = 1, vi(n)

is given as:

vi(n) = σi

√
γ req
i · ui(n) (i ∈ Kg, n = 1, 2, · · · , N) , (7)

which means that vi(n) follows the same direction as ui(n).
Clearly, the main computation complexity for calculating

vi(n) in (7) is the calculation of Ĥ(n)†. There are many exist-
ing methods to calculate Ĥ(n)† and in ReDBeam, we calculate
Ĥ(n)† based on QR decomposition and forward/backward
substitutions since some computations in this approach can
be done in parallel [34].

After calculating (7), we have N sets of precoding vectors.
We define a cone formed by these N precoding vectors, in
which we will search for wi, i.e.,

wi ∈
{
e : e =

N∑
n=1

αi(n)vi(n), αi(n) ≥ 0
}

(i ∈ Kg) , (8)

where each vector inside this cone is a linear combination of
the N basis vectors with αi(n) ≥ 0, i ∈ Kg .
Sampling Now we have a promising search space for wi but
it still contains an infinite number of complex M × 1 column
vectors. To further narrow down the search space, we generate
L initial solutions (through sampling) inside this cone.

Denote the ℓ-th initial solution as zℓi where ℓ =
1, 2, 3, · · · , L. To generate zℓi , we choose each coefficient
αℓ
i(n), n = 1, 2, · · · , N in (8) following a uniform distribution

between [0, 1]. Then we scale the αℓ
i(n)’s proportionally so

that their sum is normalized to 1, i.e.,
∑N

n=1 α
ℓ
i(n) = 1. This

means each initial solution zℓi =
∑N

n=1 α
ℓ
i(n)vi(n). Clearly,

finding the L initial solutions can be done in parallel since
they are independent of each other.

B. Finding Good Solutions via Local Search

Now we have L initial solutions zℓi , ℓ = 1, 2, · · · , L, i ∈ Kg .
However, these L initial solutions neither guarantee feasibility
nor good performance. So we will perform a local search on
each of these L initial solutions so that i) each new solution
is feasible (if possible), and ii) the objective function of P2 is
minimized.

Main Idea With 1 ms real-time requirement, the local search
must be simple and fast, with as few steps as possible. With
this in mind, we limit our local search only to the scaling of the
length (or norm) of zℓi , i.e., without creating new directions.
Denote wℓ

i as the solution for P2 after scaling of zℓi . For each
initial solution zℓi , i ∈ Kg , ℓ = 1, 2, · · · , L, we scale it with a
factor of λℓ > 0 uniformly for all i ∈ Kg to obtain wℓ

i , i.e.,

wℓ
i = λℓ · zℓi (i ∈ Kg) . (9)

With the scaling in (9), the objective function of P2 be-
comes

∑
i∈Kg

||λℓ ·zℓi ||22, which is (λℓ)2 ·
∑

i∈Kg
||zℓi ||22. Since∑

i∈Kg
||zℓi ||22 is a constant when zℓi ’s are given, the objective

of P2 can be replaced by min λℓ. Further, based on the
definition of f̂(wℓ

i , ĥi(n)) in P2, we have

f̂(wℓ
i , ĥi(n)) = f̂(λℓzℓi , ĥi(n)) = (λℓ)2f̂

(
zℓi , ĥi(n)

)
. (10)

Therefore, with given zℓi ’s, we can rewrite P2 as follows:

(P3) min λℓ

s.t.
N∑

n=1

I
{
(λℓ)2f̂

(
zℓi , ĥi(n)

)
≥ σ2

i

}
≥ N · (1− ϵi) (i ∈ Kg) ,

Definition of f̂
(
zℓi , ĥi(n)

)
in (6), λℓ > 0 .

Clearly, the main difficulty of P3 is f̂
(
zℓi , ĥi(n)

)
, which

involves non-convex QCQPs as defined in (6). In the following
paragraphs, we first show how to calculate f̂

(
zℓi , ĥi(n)

)
. Then

we show how to find λℓ in P3.
Calculation of f̂

(
zℓi , ĥi(n)

)
In P3, there are N · |Kg|

terms of f̂
(
zℓi , ĥi(n)

)
’s. Since these terms are independent

of each other, we can solve them in parallel. Based on (6), for
a specific f̂

(
zℓi , ĥi(n)

)
, we need to solve

(P4) min
ci

(|(zℓi)Hci|2

γ req
i

−
k ̸=i∑
k∈Kg

|(zℓk)Hci|2
)

s.t. ||ci − ĥi(n)||2 ≤ θi .

Unfortunately, P4 is a non-convex QCQP [35], which is NP-
hard in general. Therefore, we will find a lower bound for the
optimal objective value of P4 and use it for f̂

(
zℓi , ĥi(n)

)
in P3.

This will lead to a slightly larger λℓ in the objective value in
P3. Nevertheless, all constraints will remain satisfied except
the objective (power consumption) may be slightly higher,
which is the nature of a satisfactory solution.

To obtain a lower bound for P4, we relax its objective
function by separating the |Kg| terms, i.e.,

min
ci

|(zℓi)Hci|2

γ req
i

−
k ̸=i∑
k∈Kg

max
ci

|(zℓk)Hci|2 (11)

The gap of this lower bound depends on the parameters
zℓi , i ∈ Kg and ĥi(n). Note that the first term is related to the
received signal while the other (|Kg| − 1) terms are related to
interference. Since the initial solution zℓi is chosen from our
promising space based on ZF precoding, the interference terms

are usually small. Given that |Kg| (number of UEs per RBG)
is typically 2 ∼ 4, the terms in the summation are small.

Based on the |Kg| terms in (11), P4 can be decomposed
into two sets of independent optimization problems P4-A and
P4-B as follows:

(P4-A) min
ci

|(zℓi)Hci|2

γ req
i

s.t. ||ci − ĥi(n)||2 ≤ θi ,

and for k ∈ Kg, k ̸= i,

(P4-B) max
ci

|(zℓk)Hci|2

s.t. ||ci − ĥi(n)||2 ≤ θi .

Both (P4-A) and (P4-B) have only one decision variable
term in their objective functions and have closed-form solu-
tions. Denote dℓi(n) as the optimal objective for (P4-A) and
dℓk(n), k ∈ Kg, k ̸= i as the the optimal objective for (P4-B)
respectively. Then dℓi(n) and dℓk(n), k ∈ Kg, k ̸= i are given
as follows:

dℓi(n) =
1

γ req
i

(
max

{
0,
(
|(zℓi)H ĥi(n)| − θi · ||zℓi ||2

)2})
,

dℓk(n) =
(
|(zℓk)H ĥi(n)|+ θi · ||zℓk||2

)2
(k ∈ Kg, k ̸= i) .

Clearly, dℓi(n) and dℓk(n) can be calculated in parallel. There-
fore, we obtain a lower bound for P4’s objective function (i.e.,
f̂
(
zℓi , ĥi(n)

)
) as follows:

dℓi(n)−
k ̸=i∑
k∈Kg

dℓk(n) (i ∈ Kg, n = 1, 2, · · · , N) . (12)

Solution to P3 Substituting f̂
(
zℓi , ĥi(n)

)
with the lower

bound in (12), we can rewrite the constraints in P3 as

N∑
n=1

I
{
(λℓ)2

(
dℓi(n)−

k ̸=i∑
k∈Kg

dℓk(n)
)
≥ σ2

i

}
≥ N · (1− ϵi)

(i ∈ Kg) .
(13)

There are |Kg| constraints in (13). Denote βℓ
i as the minimum

λl to satisfy the i-th constraint of (13). βℓ
i can be easily found

by sorting N real numbers in non-decreasing order and set βℓ
i

as the (1− ϵi)-quantile, i.e., the ⌈N · (1− ϵi)⌉-th element after
sorting. Specifically, there are two cases:
i) If for all i ∈ Kg ,

(
dℓi(n)−

∑k ̸=i
k∈Kg

dℓk(n)
)
> 0 holds for at

least ⌈N · (1 − ϵi)⌉ CSI data samples, then βℓ
i is a positive

number. To satisfy all constraints in (13), we simply set λℓ as

λℓ = max
i∈Kg

βℓ
i . (14)

Using λℓ from (14) to (9), we have a feasible solution as

wℓ
i =

(
max
i∈Kg

βℓ
i

)
·

N∑
n=1

αℓ
i(n)vi(n) (i ∈ Kg) . (15)

ii) Otherwise, i.e., for some i ∈ Kg ,(
dℓi(n)−

∑k ̸=i
k∈Kg

dℓk(n)
)

≤ 0 holds for at least ⌈N · ϵi⌉

!"#$%&"'()(*&+&),"

"""-)$*"./0"+$"1/0

/()(*&+&),"2./0"#&*$)34

/.5&

1/0"16$7(6"#&*$)3

8&(*-$)*9:;

$:"<81"!

8&(*-$)*9:;

$:"<81""

8&(*-$)*9:;

$:"<81"#

8&(*-$)*9:;

$:"<81"$
=

>9:(6",$6?@$:"2./0"#&*$)34

1/0"16$7(6"#&*$)3

/.5&
!"#$%&"A:(6",$6?@$:"

"""-)$*"1/0"+$"./0

!"<&B8&(*

"""&C&D?@$:

(a) A flow chart of GPU Implementation

!

"#$%&'
(&()%*+&%,&-./0

1.2&%.3$(4-&.56.76

8
2
9
.8
-)
:
$
-.;

&
(
)
%*

+&%,&-.<0

1.6=,'.>#&.:&3>.3)-?@),.

...$A%)33.$--.>#%&$'.:-)AB3

+&%,&-.C0

1.D,=@$-.3)-?@),

1."A$-=,EF:$3&'.-)A$-.

...3&$%A#

G#%&$'.7-)AB.!

!

G#%&$'.7-)AB."

!

"#$%&'
(&()%*

G#%&$'.7-)AB.#$%

!

!

"#$%&'
(&()%*

G#%&$'.7-)AB.!

!

"#$%&'
(&()%*

G#%&$'.7-)AB."

!

"#$%&'
(&()%*

G#%&$'.7-)AB.&

!
!

"#$%&'
(&()%*

G#%&$'.7-)AB.'

!

H"D.I$>$."$(4-&3

56.7&$(J)%(=,E.K&A>)%3

6&$3=:-&.")-?@),3

6=,$-.3)-?@),

!

"#$%&'
(&()%*

G#%&$'.7-)AB.!

"#$%&'
(&()%*

(b) Beamforming on an RBG

Fig. 5. A GPU Implementation of ReDBeam.

CSI data samples, then both βℓ
i and λℓ do not exist as there

is no feasible solution to (13) under this initial solution zℓi .
We can simply drop this initial solution zℓi .

C. Finding the Final Solution

After the local search, we have at most L feasible solutions,
we can calculate their objectives (i.e.,

∑
i∈Kg

||wℓ
i ||22) in par-

allel. Then we compare these objectives and find the one with
the smallest objective (since P2 is a minimization problem).
The feasible solution wℓ

i associated with this smallest objective
value is our final solution to P2 on RBG g.

IV. GPU IMPLEMENTATION

In this section, we present a GPU implementation of ReD-
Beam. The goal is to ensure the running time of ReDBeam is
within 1 ms time requirement.

A. Overview

We choose GPU to implement our proposed ReDBeam due
to its massive parallel computing capability. A flow chart of
our GPU Implementation of ReDBeam is given in Fig. 5(a). It
consists of two data transfers and one algorithm execution. All
three parts count toward the total time consumption. These two
data transfers are necessary since we are using a COTS GPU.
To reduce these data transfer times, we use asynchronous data
transfer between CPU and GPU. We also overlap data transfers
and kernel executions between different streams [36] .

In Fig. 5(a), there are G streams and each stream calculates
the beamforming solution on a specific RBG and is indepen-
dent of other streams. The details of each stream are given

in Fig. 5(b), which corresponds to a P2 instance. We design
three kernels and kernel 2 is most involved—it generates an
initial solution zℓi and immediately performs the local search
to obtain wℓ

i , which reduces the overall time consumption.
To meet the real-time requirement (1 ms), we need to

efficiently allocate the available resources on a GPU, such as
threads for computation and memory for data storage. A thread
is the minimum processing unit for algorithm execution and
threads are grouped into thread blocks to execute kernels. Each
thread block will be allocated to a Streaming Multiprocessor
(SM) for execution and the number of SMs depends on the
COTS GPU hardware, e.g., 80 in our NVIDIA V100 GPU.
Threads can run in parallel or sequence and we need to
properly program the operations of the threads to correctly
execute ReDBeam while reducing the execution time.

Further, optimizing memory management can reduce mem-
ory access time. In our GPU implementation, we mainly use
global memory and shared memory. Global memory has a
large volume (e.g., several gigabytes) and can exchange data
with external platforms (i.e., CPU or other GPUs) while shared
memory has a faster access time but a smaller volume (e.g., 48
kilobytes per SM in our NVIDIA V100 GPU) and no external
access outside of a thread block. Thus, shared memory is more
suitable for repeatedly accessed data.

B. Details of Three Kernels

As shown in Fig. 5(b), there are three kernels in our
implementation. Each kernel reads data from GPU global
memory, processes the data, and then stores the results back
in the GPU global memory for later use.
Kernel 1 Kernel 1 is for the calculation of ZF precoding
vectors vi(n) based on CSI data samples ĥi(n), i ∈ Kg ,
n = 1, 2, · · · , N . Since there are N sets of CSI data samples,
we need to calculate N sets of ZF precoding vectors in
parallel. Calculating one set of ZF precoding vectors only
requires M |Kg| threads, which can be smaller than the number
of threads on an SM. For example, we use M = 8 and
|Kg| = 2 in our case study. Then M |Kg| = 16, which is
smaller than the number of threads per SM in our NVIDIA
V100 GPU. This means some of the threads will be idle. To
maximize the parallel computing capability of a GPU so that
all threads on an SM are utilized, we will use one thread
block to calculate multiple sets of ZF precoding vectors. In
our GPU implementation, each thread block calculates 4 sets
of ZF precoding vectors using 4M |Kg| threads1.

To further reduce the time consumption, we will enhance
parallelization when calculating each set of ZF precoding
vectors based on QR decomposition, forward/backward sub-
stitutions, and (7). For instance, we need to perform QR
decomposition of Ĥ(n) (an M × |Kg| complex matrix) that
requires the calculation of an M × |Kg| complex upper
triangular matrix R(n). With the help of M |Kg| threads,
we can calculate each column of R(n) at the same time

1This number of ZF precoding vectors per thread block can be easily
changed by operators based on network size.

instead of calculating the elements of R(n) sequentially,
which reduces the number of iterations and leads to a smaller
time consumption. Similar ideas of parallelization are also
applied to the forward/backward substitution and (7).

In terms of memory management, all temporary results such
as R(n) are stored in the shared memory to reduce memory
access time since they are frequently used in kernel 1 but are
not needed in other kernels. The ZF precoding vectors vi(n)
will be stored to the GPU global memory for later use.
Kernel 2 Each kernel 2 generates an initial solution zℓi from
(8), finds the scaling factor λℓ by (14) and applies λℓ to obtain
wℓ

i = λℓ ·zℓi by (9). Since there are L initial solutions, we use
L thread blocks and each thread block has N |Kg| threads.

The core step of generating an initial solution is to calculate
|Kg|M sums of N complex numbers with randomly generated
αi(n). Note that the promising search space (8) will be
implicitly included during this process. A common technique
to reduce execution time in GPU implementation is parallel
reduction, which is suitable for comparison or summation over
a large number of terms [37]. For a sum of N numbers,
we need log2(N) iterations and N/2 threads. Since timing
is our main concern while we have sufficient threads on GPU,
we employ parallel reduction technique to calculate an initial
solution zℓi , i ∈ Kg .

For the lower bounds in (12), we need to calculate N |Kg|2
times of multiplication of two M × 1 complex vectors in the
form of (zℓk)

H · ĥi(n). So each thread will compute one such
term and N |Kg| terms can be calculated at the same time,
which is an advantage of GPU parallelization compared to
sequential processing. Then we can easily calculate dℓi(n) −∑k ̸=i

k∈Kg
dℓk(n) based on (12).

To find λℓ, we can directly sort N numbers and then check
the sorted numbers to see whether we employ (15) to obtain
wℓ

i or drop this initial solution zi. Specifically, we need to
perform |Kg| times of sorting of N real numbers. We employ a
parallel sorting algorithm called odd-even sorting, which uses
⌊N/2⌋ threads and N iterations to sort N numbers. Then λℓ

can be easily found by comparing |Kg| real numbers or we
declare it does not exist.

If λℓ is found, we only need to multiply a real number
λℓ to |Kg| M × 1 complex vectors zℓi , i ∈ Kg . To reduce
computation time, we use 2M |Kg| threads,2 where the first
|Kg|M threads are for the real part of wℓ

i , i ∈ Kg and the
remaining |Kg|M threads are for the imaginary part of wℓ

i ,
i ∈ Kg . Then we can calculate the objective of this feasible
solution using parallel reduction.

Since we use one thread block to generate an initial solution
and perform the local search in ReDBeam, each thread block
only takes vi(n) as input and outputs a feasible solution wℓ

i ,
i ∈ Kg or declare infeasible of its initial solution. To reduce
memory access time, all intermediate results in kernel 2 are
stored in the shared memory, which includes zℓi , d

ℓ
i(n), d

ℓ
k(n),

βℓ
i , and λℓ. The output from L thread blocks has at most

2For our problem, we typically have N |Kg |2 > 2M |Kg |. So there are
sufficient threads in each thread block.

-500 -250 0 250 500

-500

-250

0

250

500
BS

UEs

Fig. 6. Topology of a 5G cell with 30 UEs.

L feasible solutions wℓ
i , i ∈ Kg , and their objective values,

which will be stored to GPU global memory.
Kernel 3 The goal of kernel 3 is to find the best feasible
solution for a P2 instance, which requires a comparison among
at most L objective values (real numbers). Based on parallel
reduction, we use 1 thread block with ⌈L/2⌉ threads to
compare these L objective values. Since L is a large number
and the objective values will be frequently accessed during
comparisons, we first copy the objective values from GPU
global memory to the shared memory before we perform
parallel reduction. After comparison, the best feasible solution
is identified and transferred to the CPU memory.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ReDBeam.
We implement ReDBeam using CUDA 11.2 Toolkit on an
NVIDIA Tesla V100, which has 5120 CUDA cores. We will
focus on ReDBeam’s running time and performance.

A. Parameter Settings

We consider a 5G cell with a 500-meter radius with a
topology shown in Fig. 6. There are K = 30 UEs randomly
distributed inside the cell. We assume the BS has 8 antennas
(i.e., M = 8). Following Fig. 1, the BS has G = 8 RBGs
and each RBG consists of 8 RBs. Under 5G numerology 0,
the sub-carrier spacing is set to 15 kHz [28]. We set the
number of UEs per RBG |Kg| = 2. The BS has a power
budget P max = 46 dBm for all 8 RBGs and the thermal noise
σ2
i is set to −150 dBm/Hz for all UEs. For the required

SINR threshold γ req
i , we set it according to Shannon Theorem,

(500/si) = log2(1 + γ req
i), where 500 is the cell radius and

si is the distance between UE i and the BS (both in meters)
[38], which means γ req

i = 2(500/si)− 1. Further, we found that
it is sufficient to set L = 650 (number of initial solutions) in
ReDBeam for our setting.

For the wireless channel, we consider the path-loss model
and fast fading. Note that the channel model described here
is used only for generating parameters in our numerical
studies. ReDBeam only relies on the CSI data samples and
is blindfolded to any knowledge of distribution information.
The path-loss between UE i and the BS is modeled by
PLi = 38 + 30× log10(si) (in dB) [39]. For fast fading, we
employ Rician fading with a 10 dB Rician factor [40], which
is a common model for correlated RBs. In addition to the
channel variation, we also need to include the CSI estimation
errors during the collection of CSI data samples. Therefore, we
employ a truncated Gaussian distribution to simulate the CSI

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

A
c
tu

a
l
V

io
la

ti
o

n
 P

ro
b

a
b

ili
ty

N = 24

N = 40

N = 56

N = 72

N = 88 = 0.1

(a) Violation probability

1.5 1.75 2 2.25 2.5
0

5

10

15

20

25

A
c
h

ie
v
e

d
 O

b
je

c
ti
v
e

 (
W

a
tt

s
)

N = 24

N = 40

N = 56

N = 72

N = 88

(b) Objective value

Fig. 7. Impact of ρ and N when M = 8, |Kg | = 2.

estimation errors [13], [14]. Specifically, we use 0 as the mean
and 0.1 as the variance for the original Gaussian distribution
and then truncate it at three times its standard deviation.

For each setting below, we perform 50 runs and all results
shown represent the average. Since |Kg| = 2, in each run,
we randomly pick 2 UEs from the 30 UEs for each RBG.
Since we have 8 RBGs, there can be at most 16 active UEs at
the same time. Given that one UE can be served by multiple
RBGs, the number of active UEs may be lower than 16.

B. How to Set θ(g,i) and N

We first discuss how to choose N and θ(g,i) simultaneously
in ReDBeam since these two parameters are coupled together.
Intuitively, a larger N means more channel knowledge and
will likely lead to better performance (at the cost of higher
complexity). On the other hand, θ(g,i) represents the difference
between the true (but unknown) distribution and the N CSI
data samples. Therefore, θ(g,i) should be smaller when N
increases. However, if θ(g,i) is chosen too small, then the
probabilistic data rate guarantees for the UEs in a solution
may not hold. On the other hand, if θ(g,i) is chosen too
large, we will use more transmission powers at the BS than
necessary [27]. Therefore, choosing an overly small value is
more detrimental, so we can choose θ(g,i) to be relatively
large to be conservative (ensure the probabilistic performance
guarantee holds).

We propose to choose θ(g,i) based on fast heuristics for
each window before executing ReDBeam. For each window
and a UE i ∈ Kg , g ∈ G, we have N CSI data samples
ĥ(g,i)(n). Then we choose θ(g,i) based on a constant factor
and the estimated standard derivation from the N CSI data
samples, i.e.,

θ(g,i) =
ρ

N
·

√√√√ 1

N − 1

N∑
n=1

(
||ĥ(g,i)(n)−

∑N
n=1 ĥ(g,i)(n)

N
||22

)
(i ∈ Kg, g ∈ G) .

(16)
In (16), ρ is the constant factor we need to choose and

the square root term is the unbiased estimation of standard
derivation [41]. The use of ρ/N is because θ(g,i) is related to
the neighboring region of each CSI data sample. Once ρ is
given, θ(g,i) can be easily calculated based on the N CSI data
samples in the current window.

To find a proper ρ and N , we set ϵi = 0.1 for all i ∈ K and
simulate ReDBeam under both 0.25 ≤ ρ ≤ 3 and 24 ≤ N ≤

88. The actual violation probabilities and achieved objectives
w.r.t. ρ and N are shown in Fig. 7. As shown in Fig. 7(a), it is
sufficient to choose ρ ∈ [1.5, 2.5] in all cases of N . Then we
zoom into these ρ values and study the achieved objectives as
shown in Fig. 7(b). As shown in Fig. 7(b), the objective only
increases slightly w.r.t. ρ. Taking both Fig. 7(a) and Fig. 7(b)
into account, we conclude that it is prudent to choose N = 40
and ρ = 2 to calculate θ(g,i) in (16).

The above process shows how to set N and θ(g,i) for dif-
ferent network settings and they can be dynamically adjusted
during run-time through continuous tracking of the violation
probabilities at the UEs. As for time consumption, in each
window, before executing ReDBeam in Fig. 5, we will use
G|Kg| thread blocks to calculate these θ(g,i)’s in parallel and
then use these θ(g,i)’s in ReDBeam to derive a beamforming
solution. This step should be counted toward the overall time
consumption.

C. A Case Study

Now we evaluate ReDBeam and compare its performance
to other algorithms. We set M = 8, |Kg| = 2, L = 650,
N = 40, and ρ = 2 based on Section V-B. For comparison, we
consider two other benchmarks. The first one is D2BF [27],
which is the state-of-the-art solution, which solves each P2
through convex approximation and Semidefinite Programming
(SDP). The second one is Gaussian Approximation [14], which
assumes CSI follows a complex Gaussian distribution. Both
D2BF and Gaussian Approximation are CPU-based solutions.
We implement them with commercial solver MOSEK 9.2.38
using MATLAB R2017b on Intel Xeon E5-2687w v4.

Figure 8 shows the running time, actual threshold viola-
tion probabilities, and the achieved objectives for ReDBeam,
D2BF, and Gaussian Approximation. As shown in Fig. 8(a),
the time consumption of ReDBeam is under the 1 ms timing
requirement under all risk levels. Further, we see the running
time of ReDBeam is rather independent of ϵ because the
running time depends on the number of steps for each thread,
which is independent of ϵ. On the other hand, none of the
other two solutions (D2BF and Gaussian Approximation) can
meet the 1 ms timing requirement. Specifically, Gaussian
Approximation requires ∼ 102 ms while D2BF requires ∼ 104

ms.
Figure 8(b) shows the threshold violation probabilities of

ReDBeam are lower than the target risk level ϵ. D2BF has
a slightly better performance than ReDBeam since it is the
state-of-the-art solution to P2. Gaussian Approximation has
the lowest threshold violation probabilities due to its conser-
vativeness.

Figure 8(c) shows that the objective value achieved by
ReDBeam is very close to (slightly higher than) that of
D2BF, from 1.4% (when ϵ = 0.5) to 11% (when ϵ = 0.1).
This demonstrates the superb performance of ReDBeam. In
Figure 8(c), Gaussian Approximation offers the worst per-
formance (as it uses the most transmission power), which is
consistent with its conservativeness demonstrated in Fig. 8(b).
In general, the closer the actual violation probabilities to

0.1 0.2 0.3 0.4 0.5
Risk level ǫ

10
-1

10
0

10
1

10
2

10
3

10
4

R
u
n
n
m

in
g
 T

im
e
 (

m
s
) D

2
BF

Gaussian Approx.

1 ms requirement

ReDBeam

(a) Running Time

0.1 0.2 0.3 0.4 0.5
Risk level ǫ

0

0.1

0.2

0.3

0.4

0.5

A
c
tu

a
l
V

io
la

ti
o
n
 P

ro
b
a
b
ili

ty

ReDBeam

Gaussian Approx.

D
2
BF

Risk level ǫ

(b) Violation probability

0.1 0.2 0.3 0.4 0.5
Risk level ǫ

0

10

20

30

A
c
h
ie

v
e
d
 O

b
je

c
ti
v
e
 (

W
a
tt
)

Gaussian Approx.

ReDBeam

D
2
BF

(c) Objective value

Fig. 8. Performance of ReDBeam.

the risk level ϵ (in Fig. 8(b)), the less power is needed (in
Fig. 8(c)).

We also conduct experiments with varying M and |Kg|
and found that our ReDBeam can meet the 1 ms real-time
requirement up to a network setting of M = 18, |Kg| = 4,
and G = 12 (i.e., serving up-to 48 UEs simultaneously), which
is sufficient for real-world scenarios. All other observations are
consistent with the above discussion.

VI. CONCLUSIONS

We investigated a novel data-driven MU-MIMO beamform-
ing approach that only uses limited CSI data samples. We
focused on the fundamental technical challenge facing this
approach—whether or not it could be done in real-time (i.e.,
1 ms for 5G). We presented ReDBeam, a real-time MU-MIMO
beamforming solution that offers performance guarantees (in
terms of probabilistic data rate requirements) and minimizes
power consumption. The key idea of ReDBeam is to employ
GPU’s massive parallel computing capability (both algorithm
design and GPU implementation) to solve the beamforming
problem on each RBG in parallel and combine them as the
final solution. For each RBG, ReDBeam first generates a
population of initial solutions from a promising subspace
derived from ZF precoding; then it employs local search to
ensure feasibility and improve objective value; and last, it finds
the one with the best objective value as the final solution. For
GPU implementation, we optimized threads allocations and
memory management to minimize the total time consumption.
Experiment results showed that ReDBeam can deliver an MU-
MIMO beamforming solution within 1 ms while minimizing
BS’s power consumption and meeting the UEs’ probabilistic
data rate requirements.

REFERENCES

[1] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless
networks: Efficient protocols and outage behavior,” IEEE Trans. Infor-
mation Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[2] E. Castañeda, A. Silva, A. Gameiro, and M. Kountouris, “An overview
on resource allocation techniques for multi-user MIMO systems,” IEEE
Commun. Surveys & Tutorials, vol. 19, no. 1, pp. 239–284, First Quarter
2017.

[3] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE J.
Selected Areas in Commun., vol. 35, no. 6, pp. 1201–1221, June 2017.

[4] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter,
and I. Moerman, “A survey on hybrid beamforming techniques in 5G:
Architecture and system model perspectives,” IEEE Commun. Surveys
& Tutorials, vol. 20, no. 4, pp. 3060–3097, Fourth Quarter 2018.

[5] M. Schubert and H. Boche, “Solution of the multiuser downlink
beamforming problem with individual SINR constraints,” IEEE Trans.
Vehicular Technology, vol. 53, no. 1, pp. 18–28, Jan. 2004.

[6] G. Scutari, D. P. Palomar, and S. Barbarossa, “The MIMO iterative
waterfilling algorithm,” IEEE Trans. Signal Processing, vol. 57, no. 5,
pp. 1917–1935, May 2009.

[7] K. Zheng, L. Zhao, J. Mei, B. Shao, W. Xiang, and L. Hanzo, “Survey
of large-scale MIMO systems,” IEEE Commun. Surveys & Tutorials,
vol. 17, no. 3, pp. 1738–1760, Third Quarter 2015.

[8] Y. Wu, R. H. Louie, and M. R. McKay, “Analysis and design of wireless
ad hoc networks with channel estimation errors,” IEEE Trans. Signal
Processing, vol. 61, no. 6, pp. 1447–1459, Mar. 2013.

[9] Y. Liu, Z. Tan, H. Hu, L. J. Cimini, and G. Y. Li, “Channel estimation
for OFDM,” IEEE Commun. Surveys & Tutorials, vol. 16, no. 4, pp.
1891–1908, Fourth Quarter 2014.

[10] X. Rao and V. K. Lau, “Distributed compressive CSIT estimation and
feedback for FDD multi-user massive MIMO systems,” IEEE Trans.
Signal Processing, vol. 62, no. 12, pp. 3261–3271, June 2014.

[11] Z. Jiang, A. F. Molisch, G. Caire, and Z. Niu, “Achievable rates of FDD
massive MIMO systems with spatial channel correlation,” IEEE Trans.
Wireless Commun., vol. 14, no. 5, pp. 2868–2882, May 2015.

[12] X. Jiang and F. Kaltenberger, “Channel reciprocity calibration in TDD
hybrid beamforming massive MIMO systems,” IEEE Journal of Selected
Topics in Signal Processing, vol. 12, no. 3, pp. 422–431, June 2018.

[13] D. Mi, M. Dianati, L. Zhang, S. Muhaidat, and R. Tafazolli, “Massive
MIMO performance with imperfect channel reciprocity and channel
estimation error,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3734–3749,
Sept. 2017.

[14] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi,
“Outage constrained robust transmit optimization for multiuser MISO
downlinks: Tractable approximations by conic optimization,” IEEE
Trans. Signal Processing, vol. 62, no. 21, pp. 5690–5705, Nov. 2014.

[15] M. B. Shenouda, T. N. Davidson, and L. Lampe, “Outage-based design
of robust Tomlinson–Harashima transceivers for the MISO downlink
with QoS requirements,” Elsevier Signal Processing, vol. 93, no. 12,
pp. 3341–3352, Dec. 2013.

[16] Y. Shi, J. Zhang, and K. B. Letaief, “Optimal stochastic coordinated
beamforming for wireless cooperative networks with CSI uncertainty,”
IEEE Trans. Signal Processing, vol. 63, no. 4, pp. 960–973, Feb. 2014.

[17] C. Pan, H. Ren, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Robust
beamforming design for ultra-dense user-centric C-RAN in the face of
realistic pilot contamination and limited feedback,” IEEE Trans. Wireless
Commun., vol. 18, no. 2, pp. 780–795, Feb. 2019.

[18] J. Xu and R. Zhang, “A general design framework for mimo wireless
energy transfer with limited feedback,” IEEE Trans. Signal Processing,
vol. 64, no. 10, pp. 2475–2488, May 2016.

[19] H. Liu, X. Yuan, and Y. J. Zhang, “Statistical beamforming for FDD
downlink massive MIMO via spatial information extraction and beam
selection,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4617–
4631, July 2020.

[20] X. Li, S. Jin, X. Gao, and R. W. Heath, “Three-dimensional beamform-
ing for large-scale FD-MIMO systems exploiting statistical channel state
information,” IEEE Trans. Vehicular Technology, vol. 65, no. 11, pp.
8992–9005, Nov. 2016.

[21] B. K. Chalise, S. Shahbazpanahi, A. Czylwik, and A. B. Gershman,
“Robust downlink beamforming based on outage probability specifica-
tions,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3498–3503,
Oct. 2007.

[22] E. Song, Q. Shi, M. Sanjabi, R.-Y. Sun, and Z.-Q. Luo, “Robust
SINR-constrained MISO downlink beamforming: When is semidefinite
programming relaxation tight?” EURASIP J. Wireless Commun. and
Networking, vol. 2012, no. 1, pp. 1–11, Aug. 2012.

[23] M. B. Shenouda and T. N. Davidson, “Nonlinear and linear broadcasting
with QoS requirements: Tractable approaches for bounded channel
uncertainties,” IEEE Trans. Signal Processing, vol. 57, no. 5, pp. 1936–
1947, May 2009.

[24] J. Zhang, M. You, G. Zheng, I. Krikidis, and L. Zhao, “Model-driven
learning for generic MIMO downlink beamforming with uplink channel
information,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2368–
2382, Apr. 2022.

[25] M. Alrabeiah, Y. Zhang, and A. Alkhateeb, “Neural networks based
beam codebooks: Learning mmwave massive mimo beams that adapt to
deployment and hardware,” IEEE Trans. Commun., vol. 70, no. 6, pp.
3818–3833, June 2022.

[26] H. Zhu, Q. Wu, X.-J. Wu, Q. Fan, P. Fan, and J. Wang, “Decentralized
power allocation for MIMO-NOMA vehicular edge computing based on
deep reinforcement learning,” IEEE Internet of Things Journal, vol. 9,
no. 14, pp. 12 770–12 782, June 2022.

[27] S. Li, N. Jiang, Y. Chen, Y. T. Hou, W. Lou, and W. Xie, “D2BF—Data-
driven beamforming in MU-MIMO with channel estimation uncertainty,”
in Proc. IEEE INFOCOM 2022, May 2022, pp. 120–129, Virtual
Conference, May 2–5, 2022.

[28] 3GPP, TS 38.211: 5G; NR; Physical channels and modulation, Jan.
2023, version 17.4.0. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3213.

[29] ——, TS 38.214: 5G; NR; Physical layer procedures for data, Jan.
2023, version 17.4.0. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3216.

[30] H. Yang and T. L. Marzetta, “Performance of conjugate and zero-forcing
beamforming in large-scale antenna systems,” IEEE J. Selected Areas
in Commun., vol. 31, no. 2, pp. 172–179, Feb. 2013.

[31] W. Yang, G. Durisi, and E. Riegler, “On the capacity of large-MIMO
block-fading channels,” IEEE J. Selected Areas in Commun., vol. 31,
no. 2, pp. 117–132, Feb. 2013.

[32] W. Xie, “On distributionally robust chance constrained programs with
Wasserstein distance,” Mathematical Programming, vol. 186, no. 1, pp.
115–155, Mar. 2021.

[33] N. Jiang and W. Xie, “ALSO-X and ALSO-X+: Better convex approxi-
mations for chance constrained programs,” Operations Research, vol. 70,
no. 6, pp. 3581–3600, Feb. 2022.

[34] R. C.-H. Chang, C.-H. Lin, K.-H. Lin, C.-L. Huang, and F.-C.
Chen, “Iterative QR decomposition architecture using the modified
Gram–Schmidt algorithm for MIMO systems,” IEEE Trans. Circuits and
Systems I: Regular Papers, vol. 57, no. 5, pp. 1095–1102, May 2010.

[35] C. Chen, A. Atamtürk, and S. S. Oren, “A spatial branch-and-cut method
for nonconvex QCQP with bounded complex variables,” Mathematical
Programming, vol. 165, no. 2, pp. 549–577, July 2017.

[36] M. Harris. (2012, Dec.) How to overlap data transfers
in CUDA C/C++. Available: https://devblogs.nvidia.com/
how-overlap-data-transfers-cuda-cc/ (Last accessed: Mar. 2023).

[37] ——. (2007) Optimizing parallel reduction in CUDA. Available: https://
developer.download.nvidia.com/assets/cuda/files/reduction.pdf (Last ac-
cessed: Mar. 2023).

[38] J. Wang, A. Jin, D. Shi, L. Wang, H. Shen, D. Wu, L. Hu, L. Gu, L. Lu,
Y. Chen, J. Wang, Y. Saito, A. Benjebbour, and Y. Kishiyama, “Spectral
efficiency improvement with 5G technologies: Results from field tests,”
IEEE J. Selected Areas in Commun., vol. 35, no. 8, pp. 1867–1875, Aug.
2017.

[39] 3GPP, TR 36.931: Radio Frequency (RF) requirements for
LTE Pico Node B, Apr. 2022, version 17.0.0. Available: https:
//portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=2589.

[40] X. Li, S. Jin, H. A. Suraweera, J. Hou, and X. Gao, “Statistical 3-
D beamforming for large-scale MIMO downlink systems over Rician
fading channels,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1529–1543,
Apr. 2016.

[41] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability
for Engineers. John Wiley & Sons, 2010, Chapter 7, pp. 224–226.

